Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations

نویسنده

  • Claude-Alain Pillet
چکیده

We construct an invariant manifold of periodic orbits for a class of non-linear Schrödinger equations. Using standard ideas of the theory of center manifolds, we rederive the results of Soffer and Weinstein ([SW1], [SW2]) on the large time asymptotics of small solutions (scattering theory).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric shape of invariant manifolds for a class of stochastic partial differential equations

Invariant manifolds play an important role in the study of the qualitative dynamical behaviors for nonlinear stochastic partial differential equations. However, the geometric shape of these manifolds is largely unclear. The purpose of the present paper is to try to describe the geometric shape of invariant manifolds for a class of stochastic partial differential equations with multiplicative wh...

متن کامل

Invariant subspaces and exact solutions of a class of dispersive evolution equations

The invariant subspace method is used to classify a class of systems of nonlinear dispersive evolution equations and determine their invariant subspaces and exact solutions. A crucial step is to take subspaces of solutions to linear ordinary differential equations as invariant subspaces that systems of evolution equations admit. A few examples of presenting exact solutions with generalized sepa...

متن کامل

On a Hamiltonian PDE arising in Magma Dynamics

In this article we discuss a new Hamiltonian PDE arising from a class of equations appearing in the study of magma, partially molten rock, in the Earth’s interior. Under physically justifiable simplifications, a scalar, nonlinear, degenerate, dispersive wave equation may be derived to describe the evolution of φ, the fraction of molten rock by volume, in the Earth. These equations have two powe...

متن کامل

Invariant manifolds for random and stochastic partial differential equations

Random invariant manifolds are geometric objects useful for understanding complex dynamics under stochastic influences. Under a nonuniform hyperbolicity or a nonuniform exponential dichotomy condition, the existence of random pseudostable and pseudo-unstable manifolds for a class of random partial differential equations and stochastic partial differential equations is shown. Unlike the invarian...

متن کامل

Symmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation

‎In this paper Lie point symmetries‎, ‎Hamiltonian equations and conservation‎ ‎laws of general three-dimensional anisotropic non-linear sourceless heat transfer‎ ‎equation are investigated‎. ‎First of all Lie symmetries are obtained by using the general method‎ based on invariance condition of a system of differential equations under a pro‎longed vector field‎. ‎Then the structure of symmetry ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997